sklearn中的Pipeline类

一、数据集描述

数据集使用的是威斯康星乳腺癌(Breast Cancer Wisconsin),数据集下载。一共包含569个恶性或者良性肿瘤细胞样本,第一列id是样本的唯一编号,,第二列表示的是样本对应的结果(M代表恶性,B代表良性)。3~32列包含了30个从细胞核照片中提取、用实数值标识的特征,用于构建判定模型,对肿瘤是良性还是恶性做出预测。


二、Pipeline类的使用

1、将字符类标转换为数值
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder

if __name__ == "__main__":
    #获取数据集
    data = pd.read_csv("G:/dataset/wdbc.csv")
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值